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Fluid transport algorithms and implicit electric field computations for particle-thud hybrid 
plasma simulation are investigated in the one-dimensional case. Emphasis is placed on 
acceptable behavior at vacuum interfaces and stable, accurate implicit electric field solutions. 
A scheme using the FCT method of Boris and Book with all quantities ceil centered gives 
good results for expansion into vacuum, but the resulting banded-matrix field soiver admits 
an unphysical even-odd spatial mode. By defining velocity and electric field at cell boundaries, 
a diagonal field solver results which eliminates this mode. Advecting momentum defined at 
celi boundaries gave poor results at vacuum boundaries; acceptable behavior was recovered 
with momentum advected at cell centers. The field solver uses the exact numerical continuity 
equation and iterates, so that convergence ensures satisfaction of the Poisson equation. 
Convergence of the field solver is affected by the choice of advection algorithm. For time steps 
large compared to the inverse plasma frequency, At B cc; ‘. the proper ambipolar limit is 
recovered. ,%’ 1991 Academic Press. Inc. 

1. INTRODUCTION 

Time-implicit particle simulations of plasmas have been developed in recent 
years, in which the fields are predicted at the new time level prior to advancing the 
particle velocities and positions [l-4]. This approach allows numerically stable 
simulations including electron dynamics, with large time steps, At > CO-~: where tip 
denotes the plasma frequency. In these time-implicit simulations, h;gh-frequency 
oscillations with w > At-’ are rapidly damped, while the low-frequency dynamics of 
electrons are retained. However, the time step in these simulations remains limited 
by the condition k,,, th tl At G 1, which states that an electron moving at the thermal 
velocity, nth, travels a short distance compared to the shortest wavelength, 
imin = 2~lkrnax 3 during a time step. Tak’en together, these conditions imply that 
time-implicit methods are useful only in the regime kmaxilD ~4 1, where AD = L~~~/cc~ 
is the plasma Debye length. This is a regime of either long wavelengths (small 
values of k,,,) or cold and dense plasmas (small values of A,). But since cold and 
dense plasmas are collisional, they have distribution functions close to Maxwellian 
and in this regime the plasma may be represented as a fluid. 
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These considerations have led to the development of particle-fluid hybrid codes, 
in which the cold and dense plasma components are given a fluid representation, 
while the sparse and energetic components are treated as particles [S-S]. The fluid 
components in these codes include electrons, which require a time-implicit evalua- 
tion of the electric field to allow time steps dt > o;i, and the required field solver 
depends on the algorithms chosen to advance the fluid. This dependence involves 
both the choice of advection scheme and the assignment of various fluid variables 
at cell centers or cell boundaries. In addition, since dense and cold regions generally 
extend only through part of the plasma, the fluid components have vacuum boun- 
daries, beyond which the plasma is represented as particles. Fluid algorithms must 
therefore behave at these boundaries in a physically acceptable manner. Even in the 
absence of particles, this multiple fluid treatment is very different from the more 
typical single fluid plasma code since the separate dynamics of inter-penetrating 
species may be followed. 

In this paper we treat the coupling of the finite-differencing of the fluid equations 
to the implicit solution of Poisson’s equation to give well-behaved, accurate 
solutions. Specifically, we consider three types of algorithms and examine (i) the 
properties of the resulting implicit field solvers for large values of wp At? and (ii) the 
behavior of the fluid at vacuum boundaries. We also require a scheme which 
satisfies the integral form of Poisson’s equation exactly, for which no divergence 
cleaning is necessary. One-dimensional electrostatic problems, with a uniform 
Eulerian mesh are considered. 

The flux corrected transport (FCT) algorithm of Boris and Book [9, lo], with 
all quantities cell-centered is applied in Section II. This method gives accurate 
solutions of isothermal and adiabatic expansions into vacuum, without pathological 
behavior at the vacuum boundary. The resulting implicit field solver requires 
solution of a matrix equation of the form 

for the implicit correction, dEj, to the electric field [6]. The matrix is typically 
pentadiagonal with dimension j,,, equal to the number of cells in the system. The 
matrix elements are of order (op At)* in size, and like the right member, depend on 
known quantities at the old time step or iteration step, as the case may be. For 
wp At < 10, this field solver gives stable results. However, at high densities corre- 
sponding to o, At > 100, this method is found to develop unphysical even-odd 
spatial oscillations in the velocity and electric field. A number of methods explored 
to eliminate this mode have led to the conclusion that fluid algorithms which lead 
to a diagonal matrix are most desirable. This requires centering velocities and 
electric field at cell boundaries and two methods which meet this condition are 
studied in Section III. 

A staggered mesh algorithm, with densities and temperatures at cell centers and 
momentum, velocities and electric field at cell boundaries is studied in Section 1II.A. 
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This algorithm yields the desirable diagonal matrix, and excludes the even-odd. 
mode of the previous method. However, in the fluid expansion problem it gives 
physically unacceptable behavior at the vacuum boundary. Unphysical compression 
of the last few nonvacuum cells occurs: giving rise to “shock heating” of vacuum 
and erroneous perturbations propagate back into the fluid [?I. The staggered 
representation of the momentum, relative to the density and temperature is also 
expected to cause difficulties in the generation of particles when application to a 
hybrid code is considered. A third algorithm in which density, momentum, and 
temperature are cell centered and only velocity and electric field are represented at 
cell boundaries is studied in Section 1II.B. This method also yields a field so!ver 
with a diagonal matrix, thus excluding the even-odd mode. In addition, it gives 
accurate solutions of fluid expansions into vacuum, with physically acceptable 
vacuum boundary behavior, for several advection methods and flux limiters 

Section IV presents some illustrative results from two-fluid plasma simulations 
which make use of the successful algorithms developed in Section III, and Section V 
gives a review of our results and a brief discussion of their application to particle- 
fluid hybrid simulations. Finally, the Appendix generalizes the implicit field solver 
of Section III to include applied potentials. 

Because of the general nature of the problems considered here, dimensionless 
units are used. The characteristic length is &,. Velocity, particle mass, and tem- 
perature are measured in units of cO, m,, T,, respectively, which are related by 
z:~ = f TO,‘m,,)l.‘z, Time is measured in units of ,$,i.i~+,. Particle density is in units of the 
characteristic density n,, electric field in units of EO = (4~n~T~)‘,~ and charge in 
units of the magnitude of the electron charge e. With these units the fluid equatims 
for the normalized density n, velocity 24, and temperature 2” become 

g+; (nu)=Q 

i (nu) + k (d) = -t i (ET) -+ R, X nE 

f$ (nT)+$ (unT)= -inTg. 

Here E is the normalized electric field, LJ and m are the normalized charge and 
mass, respectively, The quantity Q, = (4~noe2/m,)“2 &/c~ is the dimensionless 
plasma frequency and is a measure of space charge effects. The coefficient $ in 
Eq. (3) is appropriate for a monoatomic ideal gas with a ratio of specific heats, 
1’ = $. In order to ease the notational burden we have omitted any reference to 
species; it is assumed that there is a set of equations for each species corresponding 
to Eqs. (I-3). The electric field is obtained from the Poisson equation, which in 
these units takes the form. 
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where the summation is over species. Collisional effects are not included in 
Eqs. (l)-(3) but will be the subject of a future paper. 

II. CELL-CENTERED VELOCITIES 

This section describes how the fluid equations and the Poisson equation are 
discretized and solved with all quantities defined at cell centers; this will be referred 
to as Scheme # 1. The three fluid variables, density nj, momentum (n~)~, and tem- 
perature Tj are defined at the cell centers, ‘cj = (j- f) Ax of a uniform grid with 
mesh size Ax and j= 1, . . . . j,,,, as shown in Fig. 1. The fluid velocity, uj= (n~)~/n~, 
and the electric field, Ej, are also defined at the cell centers. The solution of the fluid 
equations is described in Section II.A, and the solution for the electric field is 
deferred to Section 1I.B. 

1I.A. Fluid Equations 

The three fluid equations, Eqs. (l)-(3), are in the form of generalized continuity 
equations. Their left members give the contribution due to transport, while their 
right members give contributions from source terms if any. These equations are 
advanced in time in a split step fashion, treating separately the contributions from 
transport (the advection) and sources. Transport contributions are first examined 
by considering the continuity equation without sources. 

The continuity equation, Eq. (I), is advanced in flux conservation form, 

where superscript t denotes the new time level, superscript zero denotes the old time 
level, and the density fluxes fj+ 1,,2 are still to be prescribed. Scheme # 1, described 
in this section, uses the flux corrected transport (FCT) algorithm to ensure smooth 
transport free of numerical oscillations without introducing excessive diffusion. In 
the general implementation of this method, a high order flux is defined to be the 
sum of a low order flux ff+ 112 and an antidiffusion flux f,!+ 1,2 [ 111. The low order 
diffusive flux is applied to obtain temporary densities, which are both transported 
and diffused, 

nfD=njo-(fjL,li~-fjL_1,‘2) I 

-4 AX I+- 
4 “” / 

j-l v j v j+l \ 

’ 

v * 

Cell center 
x =(j-1/2)Ax 

] 2 A\(;:ll boundary ’ 
x=j Ax 

FIG. 1. Schematic diagram of grid, showing definition of cell centers and cell boundaries. 
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These densities are then corrected by application of limited antidiffusion fluxes, 

n!=nTD-(Cj+I;2 f/A+1:2-Cj--;2f~~1;2), J J 
(4’ 

where the flux limiter, C,, 1;2, is chosen to restore the high order scheme as fully 
as possible without creating or enhancing extrema relative to H,:“. This is achieved 
here by using the flux limiter, 

where 0 = Sgn(fJ!+ l,z ). In smooth regions, C,, 1,2 = 7, and the high order flux is 
fully restored, while in the vicinity of large gradients, the maximum and minimum 
functions limit the value of C,, 1t2. For the cell-centered variables used here, the 
Shasta transport algorithm [9] can be used, and the low order flux is 

f,“,1;2=np(~-Q-:)-~(~,“+i-~P)(Q:,’~ (9) 

where Q,? = (4 - vj)/( 1 + \yj+ I - vj), and \;= At ldjiA.X is the local Courane number. 
F’or 1~~1 < i, these transported and diffused densities are guaranteed to remain 
pasitive. A number of choices for the antidiffusion flux, S;“, l;z, have been proposed. 
In “explicit” Shasta [9], the antidiffusion flux depends on the transported and 
diffused densities, 

f,“+ 1,z. = (n,‘,“, - n;y3. ;,jo; 

This choice is not entirely satisfactory becaus e it leads to diffusion of stationary 
profiles (zero velocities). To avoid this difficulty, the scheme presented here uses an 
aatidiffusion flux corresponding to “Phoenical” Shasta [lo]. This choice for ]<,;“t i ,’ 
is more complicated than Eq. (lo), involving additional terms which depend oniy 
on the old densities, but not on velocities. 

The set of Eqs. (6)-( 10) is sufficient to advance the density from the sld to new 
time level, except for specifying the time level of the velocity used to calculate the 
fluxes. We will use the operator Y to represent a single step of the continult;f 
equation as previously discussed, 

n; = !qn,y, u,‘]. (!!a) 

Here, the argument UJ implies using velocities at the new time level for calculating 
the fluxes in Eq. (9), but arbitrary time centering may be achieved using a weighted 
average of velocities at the old and new time levels in these equations. Tram 
contributions to the momentum and energy are made in a similar fashion by simply 
substituting (ntl),i and (nT)-i for n, in Eqs. (5)-(10). Source term contributions teed 
to be added to complete the time step, 
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The pressure is simply Pi= njTj, and no artificial viscosity was found to be 
necessary with this scheme. Arbitrary time centering of the source terms is accom- 
plished by partially advancing momentum and temperature with sources at the old 
time level, transporting the resulting quantities, then finishing the advance with 
source terms at the new time level. 

The set of equations, consisting of Eqs. (lla)-( llc) with Poisson’s equation, 
Eq. (4), and the computation of velocity, u= (nu)/rz, are iterated. At each iteration, 
the quantities on the right side of Eqs. (lla)-( llc) are evaluated at the previous 
iteration. For large 52, At, however, this iteration will not converge and implicit 
corrections to Eqs. (lla), (1 lb) corresponding to the electric field must be made. 
These corrections will be described later. In the computation of the velocities and 
temperatures, which require division by density, vacuum regions corresponding to 
densities below some floor value, n,,,,, must be identified. Both velocity and tem- 
perature in the first cell where n < nfloor are set equal to their values in the adjacent 
non-vacuum cell. To apply advection across the entire system, velocities also need 
to be defined in vacuum cells corresponding to n <nfloor. In vacuum regions 
adjacent to the system boundaries, the velocity is set equal to the value at the last 
non-vacuum cell. This guarantees that fluid with density below the floor, which 
corresponds to vacuum, will flow ahead of the fluid. In vacuum regions which are 
sandwiched between two fluid regions, the velocity is linearly interpolated to 
minimize the velocity gradient. In this case, pile-up of fluid below the floor level is 
possible, but is minimized. 

To test the fluid scheme described here, in particular its behavior near vacuum 
boundaries, the electric field is eliminated by setting 52, = 0 and a single fluid is 
considered. In this case, Eqs. (1 t(3) reduce to the usual equations of gas 
dynamics, applicable to a neutral gas, or to a single fluid plasma model obeying 
quasineutrality (in which case, for singly ionized ions, the effective temperature is 
the sum of electron and ion temperatures). The first test is an isothermal expansion 
into vacuum. Undisturbed fluid of density no is on the left, expanding toward 
vacuum on the right. The temperature is held uniform and constant in time, T,= 1 
in dimensionless units, so that the characteristic velocity is the isothermal sound 
speed, C, = 1. A self-similar solution [12] to this problem is given by 
n=exp(-1-n) and u=l+q, for q=(x-x,)/C,t> -1; n< -1 corresponds to 
undisturbed fluid with n =n, = 1 and zr=O. The density and momentum are 
initialized according to the self-similar solution at time t = t, = 1, with x,, = 50 in a 
system of length 200. The cell size is chosen equal to the characteristic length, 
Ax = 1. At the initial time t, the density changes from full density, n, = 1, to the 
floor density, nnoo, = lo-‘, in 20 cells, and at the floor density the velocity should 
be urnax = ln(n,/nfl,,,) = 20.7. Figure 2 shows snapshots of density and velocity 
taken at time t = 6.0 for a simulation with At = 0.025 (200 cycles). The density and 
velocity have very nearly retained their self similar profiles with the correct scale 
length, and the vacuum interface is well behaved. Deviations from the analytical 
solution are too small to be discernable in Fig. 2. As discussed earlier, the velocity 
is held constant in the vacuum region to the right, where n < nnoo, = lo-‘. 
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FIG. 2. Single fluid isothermal expansion test for Scheme # 1. Density (a j and velocity tb) at time 
i = 6.G; initialized at to = 1.0 and dr = 0.025. 

As a second test, temperature variations are included, with density, momentum, 
and temperature initialized according to a self-similar solution Cl21 for adiabatic 
expansion (single fluid, 52, = 0, as in the previous test). For a monatomic ideal gas 
(y = $), the undisturbed fluid at temperature T= 1 has an adiabatic sound speed 
c, = “$1;2 = 1.29. This self-similar solution predicts y! = (3 - ;)3/4’> u = 3C,( 1 -t- <)/S. 
and T= (3 - [)‘j4* for - 1 < < < 3, where ( = (.x-xo)/C,r. At < = 3 correspondkg 

(sh09) 

n U 

3.6 

1.8 

FIG. 3. Single fluid adiabatic expansion test for Scheine #I. Density (a), ve[ociry !b), acti 
temperature (c) at time r = 23.88; initialized at time to = 3.88 and At = 0.1. 
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to x=x,+ 3C,t both density and temperature vanish, and the velocity attains its 
maximum value, u,,, = 3C,. i < -1 corresponds to undisturbed fluid, n = no = 1, 
T= T,, = 1, and u = 0. At x = x0, all three quantities are constant in time: u(xO) = 
$ C, = 0.97, n(xo) = ($3 = 0.42, and T(x,) = ($j’ = 0.56. The test is initialized at 
t, = 3.88, with x0 = 50 in a system of length 200, and again Ax = 1. The density 
initially falls from full density, n, = 1, to floor density, nnoo, = 10p9, in 20 cells. 
Figure 3 shows results at time t = 23.88, with a time step At=O.l (200 cycles). 
Examination of the density, velocity, and temperature show that their values have 
remained very close to the correct values at x = x,,. The rarefaction wave has moved 
into the unperturbed fluid to the left at speed C,. Deviations from the analytic solu- 
tion are again too small to be discernable in the plots, except that the computed 
profiles are slightly rounded where the expansion meets the unperturbed fluid, while 
the analytic solutions have a discontinuous slope at this point. The velocity profile 
is nearly linear with the correct slope, cut off by vacuum just short of umaX and 
x=x~+zfmax ) t and the vacuum interface is well behaved. The solutions are smooth, 
except for a stationary glitch at x =x,,, which is also too small to be discernable in 
the plots of Fig. 3. 

These tests have shown that Scheme # 1, with all quantities at cell centers gives 
very good performance on these two expansion problems with no difliculties at 
vacuum interfaces. We next consider implementation of the implicit electric field 
solve. 

1I.B. Implicit Electric Field 

The electric field is determined by the Poisson equation, Eq. (4), but for stable 
solutions with large time step, corresponding to 52, At > 1, it is necessary that the 
momentum equation be advanced with the electric field at the new time level. This 
electric field is related through the Poisson equation to density at the new time 
level, which must also have been advanced using velocities at the new time level. 
This requires an implicit solution of Eqs. (Ila), (llb), together with the Poisson 
equation. We desire a solution which conserves charge, i.e., satisfies an integral form 
of the Poisson equation (Gauss’ law). In addition, the electric field should reduce 
to the quasineutral limit for Q, At % 1. 

The Poisson equation, Eq. (4), is written in discrete form at the new time level, 

Ef,l - Ef = AX Q, C q(n,’ + nj+ 1 )/2, (1.2) 

where the densities are averaged to represent the charge between cell centers j and 
j+ 1. Elliminating the densities at the new time level through use of Eq.(5) yields 

Ef,l -Ef=AxQ~ C $ C(nio-(f/+1,‘2-fj--1/2))+(nio+,-(fi+3,2-fj+liz))] 

=E;+, -E.P+Axf$ c; (-J;+3,2+fi-d 
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In going from the first to second line it has been assume that the Poisson equation, 
Eq. (IZ), is also satisfied at the old time level. Adding and subtracting J;+ i.z allows 
Eq. (13) to be written as a perfect finite difference, G;+ I - G; = 0, where 

Here, C’ is a constant, which may be time-dependent, but is independent of 
position. This constant is set to zero for floating potentials at the boun 
discussed in the Appendix. Note that the fluxes are effectively at the new level 
since they depend on uJ. Equation (14) has the appearance of Ampere’s law. 
dE/dr = - 4xJ, where the current is expressed as an average of the density fluxes. 
Use of the fluxes which will actually advance the density ensures charge conserva- 
tion. This is not necessarily true if the replacement (,c+ L;z +I;- :,,2)/3 -+ (nzq is 
made although Eq. (14) then becomes quite simple to solve for Kf by substith-q 
Eq. (lib) for (nz4)J. 

Instead we solve the nonlinear Field equation by Newton’s iteration and write the 
new electric field at iteration level 4 + f as Ef = EJ!’ ’ = ET + SEj, where Ey 1s the 
new electric field at iteration level 4 and 6E, is the correction. Expanding GP”’ 
linearly with respect to 6E, (k = I, . . . . j,,,) about the previous iteration gives 

which can be solved for the corrections, bEk, to the electric field. It is important to 
realize that the differentiation of the Gys with respect to the c”,‘s in Eq. (15) mus: 
take into account the dependence of the fluxes on the E,‘s through the velocities. 
Because the flux J;+ ljZ depends on at least uj and zlj+ 1) see Eq. (!I), and on the 
choice of antidiffusion flux, this leads to a banded matrix equation for the .5J?j’s. 
Using the momentum equation 

from which the matrix elements are 

When calculating the flux derivatives, it is assumed that the flux hmiter is unity. 
S,+ l/z = f,", i/Z + f,++ 1;2. For explicit Shasta with -the fluxes defined by Eqs. (9), (IQ). 
a penta-diagonal matrix is obtained. This is also true for antiduffusion fluxes corre- 
sponding to Phoenical Shasta, since the velocity dependence of the fluxes is the 
same. Note that the matrix elements are of order (Q, At)‘, and only at low density 
is the matrix diagonally dominant. 
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To implement this implicit field solver, the time step begins with values at the old 
time level for the first approximation. The fluid equations, Eqs. (lla)-( llc), are 
advanced for all species using old iteration values to evaluate the right members, 
giving provisional densities and momenta, 

12; = !fyn;, u,4] 

(nu); = Y[(ru#, ui”] + At 
1 (Pj”,, - P;-l) 

-m 
2Ax 

+ 52, y n:Eg 
rn I 

from which provisional velocities, u; = (nu)+j are calculated. Using the provisional 
velocities, the matrix coefficients gik and GT are evaluated and the matrix equation, 
Eq. (15), is solved for the 6E,‘s. Finally the provisional values are corrected to 
obtain values at the new iteration level, 

~?+l=u!+Q A&E. 3 J P m ’ 

n?+‘= Y fl! J C u4+l 
J’ I 1 

and (nu):+’ = nJ!+ ‘uy+‘. The iteration cycle may then be repeated until 
convergence is achieved. 

A closely related version of this Scheme # 1 was implemented in a particle-fluid 
hybrid code which has been applied to plasma expansion and diode problems [6]. 
The dense fluid components in these simulations represented a hydrogen plasma 
with density n z lOi cm-3, giving oP At < 20 for the time steps which were used. 
However, attempts to extend the applications to higher densities, corresponding to 
oP At > 100 failed because of the appearance of a strong spatial even-odd mode at 
early times. This mode will be illustrated in the following tests. The purpose of these 
tests is to check that the correct ambipolar field is set up in density gradients with 
large o, At. Recall that the ambipolar field is obtained by neglecting electron inertia 
and balancing the electric field force with the pressure gradient in the electron 
momentum equation, Eambi = - (T,/Q,n) dn/dx. Quasi-neutrality implies that the 
electron and ion densities are nearly equal. In the following tests, a fixed ion density 
profile is maintained, with two uniform density regions, n = 1 on the left and 
n = 1 - 6n on the right, joined by a linear density ramp of length L,, as shown in 
Fig. 4a. The electron fluid is initialized with the same density profile as the ions, and 
zero velocity. The electron temperature is also held constant, Tj = 1. At the end of 
the first time step, the electrons should expand to the right to set up the electric 
field E~mbi = Gn/Q,L,,n. The electron fluid velocity necessary to set up this field in 
one time step can be estimated by approximating (A.+ I,,z +fi- &/2 = nu At/Ax in 
Eq. (14), from which u’= E,,,,/(Q,n At). 

Results for a case with Q, = 1000, At = 0.1, 6n = 0.1, L, = 9, Ax= 1, and four 
iterations are shown in Fig. 4. The electron charge and mass are - 1 and + I, 
respectively, so that oP At = 100 at the high-density side, where o, is the plasma 
frequency. For these parameters, the ambipolar field and electron fluid velocity 
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FIG. 4. Ambipolar field test for Scheme # 1, with flux limiter tuned off. Electron density (a I, 
implicit electric field (b). and electron velocity (cl after first time step; R, = IO’, 3r =O.l, 6n =O ! in 
L, = 0 Ax, and tiaed ions. 

should be 1.11 x 10-j and 1.11 x lop7 respectively at the high density side of the 
gradient, and 1.24 x 10-j and 1.37 x lop7 at the low density side. In a first test: 
the flux limiter has been turned off (Cj+ 1,2 = 1). The electron fluid has moved after 
the first time step is completed but the difference between electron and ion density 
is too small to be discernable in Fig. 4a. The implicit electric field, shown in Fig. 4b, 
agrees closely with the expected ambipolar field. The field error, defined as the 
difference between the implicit field and an explicit solution to the Poisson equaiion 
is less than IO- lo. This corresponds to a relative error of approximately IO-’ which 
indicates excellent convergence. The electron velocity shown in Fig. 4c, however; 
has an unphysical even-odd oscillation impressed upon the expected profile. T 
can be understood by realizing that for small Courant numbers, the flux is 
approximately proportional to the average of adjacent velocities. Therefore, such an 
even-odd oscillation has little effect on the flux and is decoupled from the implicit 
field computation. However: this mode causes large errors in momentum and 
energy. 

This problem is exacerbated when the flux limiter is turned on, as would be the 
case in real physics simulations. Figure 5 shows the results from an identical test, 
except that the nonlinear flux limiter is now turned on. The implicit field now 
exhibits small fluctuations as shown in Fig. 5a, and the velocity, Fig. 5b, is com- 
pletely dominated by the unphysical even-odd oscillations. Finally, the explicit 
electric field, calculated at the end of the time step, Fig. 5c, bears no resemblance 
to the implicit field showing that convergence has not been obtained. 
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FIG. 5. Ambipolar field test for Scheme # 1, with flux limiter turned on. Implicit electric field (a), 
electron velocity (b), and explicit electric field (c) after first time step; all parameters the same as Fig. 4. 

There are then two problems in the field solver for Scheme # 1. Because of the 
averaging of velocities to form the density fluxes, an even-odd oscillation in the 
velocity is excited. Second, any errors in convergence are propagated throughout 
the system by nonlocal effects due to the off-diagonal elements of the matrix used 
to compute the implicit field. If velocities are defined at cell boundaries, then the 
density fluxes fit ii- , may be defined to depend only on uj + ij2 and the averaging of 
velocities is avoided. Furthermore, by defining electric fields at the cell boundaries 
as well, the averaging of fluxes in Eq. (14) is no longer necessary and a diagonal 
field equation is possible. We expect that such a field solver will eliminate the 
problems previously encountered as well as be simpler computationally. 

III. BOUNDARY CENTERED VELOCITIES 

We saw in the previous section how problems arose in the field solver for 
Scheme # 1, due to averaging velocities to calculate the density flux. In addition, 
the nonlocal nature of the matrix equation aggravates convergence errors caused by 
the flux limiter. These problems may be eliminated by defining velocity and electric 
field at the cell boundaries, uj+ ii2 and Ej+ 1,,2. With velocity at the cell boundaries, 
the finite difference form of the continuity and temperature equations poses no 
problems. The momentum transport, however, is not so obvious since mass density 
and velocity are now defined at different places on the grid. A method with momen- 
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turn defined at cell boundaries is described in Section IIIA. This will be referred tc 
as Scheme # 2. Results from vacuum expansion tests are presented which show that 
this scheme gives unphysical behavior at the vacuum boundary. In Section IKE, 
another approach is described, with momentum defined at cell centers for the 
transport contributions, but with velocities advanced using sources at the cell 
boundaries. This method, which will be referred to as Scheme # 3, gives satisfactory 
results in the vacuum expansion tests. In Section III.C, the diagonal implicit field 
solver is developed and ambipolar tests with large ~0~ at are presented to show t&al 
this scheme does not suffer from the evenodd mode. 

IT1.A. Momentum at Cell Boundaries 

Faith velocities at the cell boundaries, the density transport is written as 

and may still be carried out using Eq. (5), where the fluxes now depend on 
velocities at cell boundaries, U, + I,,2. Note that the Shasta algorithm can no longer 
be used, since its low-order fluxes, Eq. (91, make specific use of cell-centered 
velocities. However, other methods using velocities at cell boundaries can be used. 
For example, in the method of van Leer [ 13, 141, the fluxes are defined as 

A discrete momentum equation may be formed by defining momentum at the cell 
boundaries also, and using averaged velocities for the momentum transport fluxes. 

where angular brackets denote spatial averages, for example, (z);, i ,1 = 
(nj + nj+ ,)/2. The averaged velocity (u’)~, i is substituted for u,+ 1i2 in Eqs. (17) to 
define momentum fluxes at cell centers, fj+ I. With this algorithm, the pressure 
must include an artificial viscosity, P,= njTj+ Qj9 where 
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FIG. 6. Single fluid isothermal expansion test for Scheme #2. Density (a) and velocity (b) at time 
t = 6.0; initialized at tC = 1.0 and At = 0.025. 

to maintain stability in compressive regions. The dimensionless parameter K is 
typically set to unity. Since temperature is defined at cell centers, the internal 
energy, 3nT/2, may be transported in the same manner as the density, see Eq. (16). 
Adding the source term, the temperature equation becomes 

(20) 

where the pressure, P.i, includes the artificial viscosity term. Scheme #2 is defined 
by Eqs. (16), (18))(20), and Eqs. (17) define the fluxes entering in the transport 
operator, !P, when the van Leer method is used. As described in Section II, these 
equations are iterated, with values from the old iteration used to approximate 
advanced time level quantities in the right members. 

Vacuum expansion tests, similar to those applied to Scheme # 1 have been 
applied to this scheme. Again, these are single fluid tests without electric field 
(Q, = 0), initialized according to self-similar solutions for either isothermal or 
adiabatic expansions. Results for the isothermal expansion test (T,= 1 held 
constant) are shown in Fig. 6. This test is identical to the case considered for 
Scheme # 1, except nfloor = 10-j. Large ripples in both density and velocity are now 
apparent. Results from an adiabatic expansion test are shown in Fig. 7. All 
parameters are again the same as for the test of Scheme # 1, except nnoo, = lo-‘. 
Oscillations in velocity near the vacuum interface, Fig. 7b, and resultant shock 
heating of the temperature, Fig. 7c, are obvious. Both of these tests utilized a 
treatment at the vacuum boundary similar to that described in Section 1I.A. Other 
treatments, such as setting the velocity to zero beyond the first vacuum cell and 
turning off compressive heating in the last cell gave similarly unphysical results. 

1II.B. Momentum at Cell Centers 

The difficulties encountered with Scheme #2 are attributed to the fact that 
transport is not carried out on the same mesh for all three fluid quantities, i.e., the 
momentum transport is staggered relative to the transport of mass and energy. 
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FIG. 7. Single fluid adiabatic expansion test for Scheme #I. Density (a). velocity (b). and 
temperature (c) at time f = 23.88; initialized at rO = 3.88 and dr = 6.1. 

Therefore, in this section we consider a third method which alleviates this problem 
by transporting momentum defined at cell centers, while velocities at ce!i 
boundaries are advanced with source terms also at cell boundaries. Starting with 
nj’> (n14);, up+ ,.?, TF, and Ey, 1;2, density and temperature are advanced using 
Eqs, (16) and (20). Momentum and velocity are advanced by first transporting the 
momentum, 

from which intermediate velocities at cell boundaries are calculated, 

These velocities are then advanced by source term contributions. 

Es* I+ I 2 + Auj+ 1;~. 

Finally, momentum is advanced using an average of these source terms, 

(nu)f = (nu): + $~f(Au,~+ I 2 + Auj- i 2)7 
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FIG. 8. Single fluid isothermal expansion test for Scheme #3 with van Leer advection. Density ta) 
and velocity (b) at time 1= 6.0; initialized at time I,, = 1.0 and Af = 0.025. 

completing the time step. In this scheme, it is really momentum that is advanced, 
while velocities are redefined in each step by the averaging process of Eq. (22). Note 
that in Eq. (23a), only the velocity increments AU,+ r12 are averaged to define the 
new momentum, while the transported momentum (HU),? comes from Eq. (21). This 
average merely defines the source terms at cell centers, and does not lead to diffu- 
sion, as would occur if the velocities z$+ 1,,2 from Eq. (23) were averaged to compute 
the cell-centered momentum. The scheme is momentum conserving; the total 
momentum (sum over j and over species) at the new time level is equal to the total 
momentum at the old time level plus pressure and electric field terms at the system 
ends. 

Scheme #3 was tested on single fluid vacuum expansion problems just as 
Schemes # 1 and #2 were previously. Results for the isothermal expansion into 
vacuum are shown in Fig. 8. All parameters are the same as for the test of Scheme 
# 1 shown in Fig. 2. Observe that the ripples in density and velocity are not nearly 
as pronounced as for Scheme #2, although the results are still not as good as for 
Scheme # 1. Results of the adiabatic expansion are shown in Fig. 9. The parameters 
are dt =O.l, and to = 3.88, exactly as in the test of Scheme # 1. These results 
are satisfactory out to the point where density and temperature should become 
zero, but beyond this point, a low density, high velocity precursor preceeds the 
expansion. 

The results shown in Figs. 8 and 9 utilized the van Leer method Eqs. (17) for 
computing the fluxes used in transport. We found that FCT methods gave some- 
what better results. One such method is to use Donor Cell as the low order flux, 

f,"+ l/2 = '>+ li2"j for vj++1,/2>" 

= vj+ llznj+ 1 for vj+1/2<" 

and define the antidiffusion flux as 

fjA+1;2=tVj+l12(1-~~+1!2)(nj+l-nj-1) for vj+1i2>0 

= -i')+1,'2(l +1>+l/2)(nj+2-nj) for vi + rjz d 0. 
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FIG. 9. Single fluid adiabatic expansion test for Scheme #3 with van Leer advection. Density (a), 
veiocity (b), and temperature (c) at time I = 23.88; initialized at time f0 = 3.88 and dr = 0.1. 

The full transport scheme then is determined by substituting these fluxes into 
Eqs. (6) and (7) and using Eq. (8) for the flux limiter. Like the van Leer method 
[ 131, this is a conservative limited version of Fromm’s method [ 1.51 for the case 
of constant velocities, and so it will be referred to as FCT-Fromm. The adiabatic 
expansion test using this transport scheme gives results shown in Fig. 10. S -by- 
step observations of the computation show that the FCT scheme provides a Ural 
“gating” effect and does not allow the low density precursor. The results are quite 
good, with the principal error being that the density and temperature are cut off 
prematurely near the vacuum interface. When the isothermal problem is repeate 
with transport calculated using this method the results are nearly identical to those 
shown in Fig, 8 using the van Leer method. This and other FCT algorithms have 
been compared to the second-order TVD (total variation diminished) constraint of 
Sweby [16] and tested on constant velocity advection of various density profiles. 

Thus, Scheme #3 nearly recovers the good properties at vacuum boundaries 
demonstrated by Scheme # 1 in Section 1I.A. In addition, this scheme allows a 
diagonal implicit field solver. 
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FIG. 10. Single fluid adiabatic expansion test for Scheme #3 with FCT-Fromm advection. Density 
(a), velocity (b), and temperature (c) at time t = 23.88; all parameters same as Fig. 9. 

1II.C. Diagonal Field Solver 

The implicit field solver, resulting from having defined velocities and electric 
fields at cell boundaries will now be derived. Since this field solver does not depend 
on the details of the momentum transport, it is applicable to either Scheme #2 or 
#3, although the tests to be presented later have been performed only with 
Scheme #3. The integral form of the Poisson equation at the new time level is now 

Ef+ 1~ - Ef- 1;2 = Ax Qp 1 qnf. 

Because electric fields are defined at cell boundaries and densities defined at cell 
centers there is no need to average densities as in the case of Eq. (12). The deriva- 
tion proceeds just as in Section 1I.B: Eq.(5) is used to eliminate 7; in favor of FZ: 
and the density fluxes, then the Poisson equation at the previous time step is used 
to replace n;, and the resultant perfect finite difference is integrated to obtain the 
new field equation, 



FLUID .4ND FIELD ALGORITHMS 2g-j 

Again, the integration constant has been set to zero, corresponding to floating 
potential; the Appendix generalizes this to allow an applied potential across the 
system. Since fj+ 1.:2 depends only on uj+ l;Z, which is advanced using E,, ij3, the 
field equation is diagonal. Just as for Scheme # 1, charge conservation is guaran- 
teed by using the numerical fluxes from the continuity equation in Eq. (24). The 
field equation is solved again by Newton’s iteration, setting EY A ’ = Eq + dE, where 
4 and 4 + 1 denote successive iteration levels and all quantities are at the same ceil 
boundary, j + 4. The quantity Hq + i is expanded as Hq+ ’ % Nq i (c?H/~E)~ 6E = 6, 
which can be solved for the field correction, 

bEi,,;,= - 
HP+ I:2 

(W&f+ 1!2 

Ei”, 1.:2 - E;+ 1;2 + 4.x Q, C qf,:, 1 .z 
(25) 

=- 
l+tQpdf)' C (q2/m)(df/av)j+1:2 . 

The flux fi+ i;z and its derivative c?A+ ,~2./&j+ l,Z depend on the particular transport 
algorithm, for example, Eqs. (17) for the method of van Leer. The field solver is 
implemented in much the same way that was described in Section ILB. New itera- 
tion values of the fluid variables are computed using Eqs. (16), (2@)-(23), with the 
right members evaluated at the previous iteration. Old time values are used as a 
first approximation as was done in Scheme # 1. The velocities from Eq. (23) are 
provisional values needed to evaluate 6Ej+ l.z from Eq. (25). Finally the provisional 
velocities are corrected using 6Ej+ 1:2 and new densities and momenta are deter- 
mined. The cycle is then repeated until convergence is obtained. 

The same ambipolar field test with a fixed ion gradient, which was performed in 
Section 1I.B for Scheme # 1 is now repeated using Scheme #3. The parameters are 
the same, 6n=O.l, L,,=9 (4x= l), Q,= 1000, Tj= 1 (constant)Y dt=O.l, and the 
van Leer method was applied to define the transport fluxes. The electric field at 
the end of the time step (with four iterations), shown in Fig. lla, closely matches 
the expected ambipolar field. The error between this field and an explicit solution 
to the Poisson equation at the end of the step is less than 1.8 x 10-l’ corresponding 
to a relative error of less than 2 x lo-“. The velocity at the end of the time step, 
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FIG. 11. Ambipolar field test for Scheme #3 with van Leer advection. Implicit electric field !a’) and 
electron velocity (b) after first time step; all parameters the same as Fig. 4. 
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FIG. 12. Ambipolar field test for Scheme #3 with FCT-Fromm advection and flux limiter turned 
on. Implicit electric field (a) and electron velocity (b) at end of first time step; all parameters same as 
Fig. 4 except 6n = 0.9. 

shown in Fig. lib, confirms that the new solver has eliminated the unphysical 
even-odd mode which was present in the results for Scheme # 1. 

Because of the satisfactory results on fluid expansion problems in Section 1II.B 
with the FCT-Fromm transport algorithm, it is important to confirm that the field 
solver can also be successfully implemented with this algorithm. There is some 
uncertainty in defining the derivative of the flux required in Eq. (25) because it now 
depends on the flux limiter which has nonlocal dependence on neighboring ui+ 1,,2. 

Including the full velocity dependence of the flux limiter would return us to a non- 
diagonal field equation. One approach would be to differentiate assuming that the 
flux limiter is unity (the approach taken in Section 1I.B.). Another approach, which 
has been adopted here, is to simplify the derivative as LYf/av z f/v. This has the 
additional benefit of preventing wildly diverging iterations when af/& z 0. For 
uj+ Ii2 + 09 u-/4,.+ 112 approaches a finite limit equal to a weighted average of 
neighbooring cell densities. To protect against division by zero, this is implemented 
as W)j+ I12 = (nj + nj+ 1 l/2 when I\>+ 112 1 falls below a small threshold. This 
corresponds to an average of the low order fluxes (Donor Cell) for vj+ ,,2 > 0 and 
\rj+ 1,,2 < 0. The results of an ambipolar field test with a fixed ion density gradient 
using the FCT-Fromm algorithm are shown in Fig. 12. The simplified derivative 
just described has been used and the test has been made more stringent by setting 
6n = 0.9 (density on right equal to 0.1). The time step has also been increased to 
dt = 0.5, keeping L, = 9 and Lip = 1000. The plots of electric field and velocity in 
Figs. 12a and b confirm that good agreement with the ambipolar results has been 
obtained. Again, convergence is very good, with the absolute error between the 
implicit field and an explicit solution being less than 2.2 x lo-“, corresponding to 
a relative error of less than 3 x 10P7. 

IV. Two FLUID TESTS 

The previous section has demonstrated that Scheme # 3 yields satisfactory results 
for single fluid expansions into vacuum and that the choice of variable centering in 
this scheme makes possible a diagonal field solver, which remains accurate for large 
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values of L?, dt. Here these two features are combined in several examples of 
implicit two-fluid simulation in which both electrons and ions are mobile. Since fric- 
tion, temperature equilibration, and heat flow are not included in these simulations. 
they are applicable only to collisionless plasmas. In the context of this paper, they 
are intended only to be more complete tests of the fluid and field algorithms 
previously investigated. An artificial mass ratio, nzi,‘nz, = 100 is used, with electron 
and ion temperatures constant, although not necessarily equal. 

The first example considers a plasma expansion into vacuum. The electron fluid, 
charge ge = - 1 and mass rn, = 1 has a constant temperature of T, = 0.9. The ion 
fluid, charge g, = + 1 and mass m, = 100 has a constant temperature of Ti = 0.1. The 
electron and ion fluids are initialized according to the self-similar solution for an 
isothermal expansion, with the sound speed defined as C, = [(T, + T,)/m;] “’ = 3.1 
They are initialized at r0 = 20, and therefore C, t, = 2. Other simulation parameters 
are 4t=O.l, 4.u= 1, rlfloor= lop9 and Q,= 105, given w,dt= 1Oa at the high den- 
sity side. The transport fluxes are defined using the FCT-Fromm algorithm. Results 
at time r = ‘70 (500 cycles) are shown in Fig. 13. The electron density and velocity, 
shown in Figs. 13a and b, have remained true to the self-similar profiles. The elec- 
tric held from the implicit solution at this time is shown in Fig. 13~. If the density 
exactly followed the self-similar solution and quasineutrality was obeyed, then the 
electric field should be the ambipolar field which is constant, Eambi = ( T,/Q,)iCS f - 
1.29 x 10e6. Note that this is nearly true over most of the density gradient region., 
except for the small ripples at the high density side, and the negative spike near 
vacuum. In fact, the electric field ripples at the high density side are simply faithful 
reproductions of the ambipolar field due to density irregularities. Similar oscilla- 

(tf 01) 

FIG. 13. Two fluid isothermal expansion. Electron density (a)> electron velocity (b), and impkit 
electric field IC) at time t = 70. Mass ratio ml/m, = 100, Q, = 105, At = 0.1, and four fieid iterations. 
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FIG. 14. Two fluid isothermal expansion. Explicit electric field at time t = 70 from run pictured in 
Fig. 13 with four field iterations (a), and from otherwise identical run with six field iterations (b). 

tions are observed when single fluid simulations are performed and the ambipolar 
field calculated after the fact. 

As a check on the accuracy of the implicit field shown in Fig. 13c, the explicit 
solution to the Poisson equation at the same time, t =70, is shown in Fig. 14a. It 
can be seen that errors of order 10% are present in the region 30 <x < 50. 
Examination of the simulation at earlier times shows that most of this error builds 
up during the first 100 cycles when the gradients are very steep. After this time, the 
absolute error remains nearly constant while the relative error increases due to the 
decreasing ambipolar field level. As in earlier tests, this simulation used four itera- 
tions at each time step. Increasing the number of iterations reduces this error. 
Figure 14b shows the explicit electric field solution when six iterations are used; this 
is now in excellent agreement with the implicit field solution, having less than 1% 
relative error. It is likely that this larger number of iterations was only necessary at 
the beginning of the simulation and could have been reduced after the first hundred 
cycles, perhaps to less than four iterations. 

The assumption of quasineutrality made in the self-similar solution depends on 
the gradient scale length being long compared to the Debye length, L,, % AD. If we 
assume the profile to be given by the self-similar solution, then L,, = C, t, and at a 
given time t, this condition will be violated for small enough density. The density 
at which the scale length and Debye length are equal, L,, =LD, decreases with 
increasing time. For the previous example at the time of initialization, t = t,, the 
scale length and local Debye length are equal at a density of n = 2.3 x lo-“, which 
is below the minimum density, nnoo, = 10-9. As an example where deviations from 
quasineutrality are resolved, consider a case identical to the previous one, but with 
Q2, = 103. Now at the time of initialization, L,, = d, at n = 2.3 x 10P7 and 
quasineutrality is not expected near or below this density. Indeed, such a simulation 
quickly deviates from quasineutrality at densities below n = 10P6, and a pure elec- 
tron region extends out in front of the ions. At later times, quasineutrality and the 
self-similar expansion extend to lower densities. Figure 15 shows snapshots taken at 
time t = 49.7. Electron density is shown in Fig. 15a; the ion density still closely 
follows the self-similar solution, but the electron density deviates below IZ = 10P7. In 
particular, the pure electron region ahead of the ions is obvious. The electron fluid 
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FIG. 15. Two fluid isothermal expansion. Electron deflsity (a), electron velocity ibj. and implicit 
electric field (c) at time I = 49.7: same parameters as in Fig. 13 excep: for QP = 10’. 

velocity and electric field at this same time are displayed in Figs. 15b and c, The 
pure electron gas is blowing off at high velocity, and at this time has reached the 
right boundary of the system, where it is absorbed. This high velocity has forced a 
decrease in the time step so that the Courant limit is not violated, nr = 0.025. At 
earlier times osciilations in both electric field and electron density are observed 
which may be regarded as electron plasma waves that are resolved (my dt < I ) for 
densities below n = 10P3. Field convergence was very good with only four iterations 
(maximum error of 10P9) showing how convergence is faster for smaller R, oi?. 

As a final example, a two-fluid shock tube problem is considered. Both electron 
and ion fluids are initialized with a stationary (u, = U, = 0) density jump from n = ! 
?o II = 0.1 in one cell (dx = l), at I = 30. For this simulation, Q2, = 10’ and dt = ii.! 
so that wP dt = 100 at the high density side. As in the previous example, qe = - 1: 
WI, = 1, qi = + 1, 172i = 100, and the electron and ion temperatures are held constant, 
T, = 0.9, ri = 0.1. The transport is accomplished using the FCT-Fromm advection 
scheme; four field iterations are performed at each time step. Except for Ihe 
constraint of constant temperatures, this situation is similar to standard shock tube 
problems. Electron density, velocity, and the implicit electric field are shown in 
Figs. 16a-c at time t = 100 (1000 cycles). The shock and rarefaction fan are ciearly 
evident; because of the isothermal constraint, no contact discontinuity is present. 
These density and velocity profiles are very close to what is observed in single f&d 
simulations with effective temperature T= r, + Ti = 1 for the same initial condi- 
tions As expected for these parameters, the implicit field is a faithful reproduction 
of what would be expected for the ambipolar field. Although it is not shown, the 
explicit solution for the electric field suffers from large errors which occur at the 
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FIG. 16. Two fluid isothermal shock tube. Electron density (a), electron velocity (b), and 
electric field (c) at time f = 100; mass ratio ~/HZ, = 100, Q, = 103, At = 0.1. 

shock front. Unlike the previous vacuum expansion example, however, even 
doubling the number of iterations (to eight) still leaves a large error. This non- 
convergence appears to be due to the nonlinear flux limiter causing the density 
flux to be nearly independent of velocity in certain steep gradient regions. The 
approximation of 15flav z f/ \I used in the field solution is inadequate in this case 
and gives a poor prediction of the new flux. This is a weakness of the FCT trans- 
port algorithm, from which the van Leer method does not suffer. Using the van 
Leer advection for this test problem gives results nearly identical to those shown in 
Fig. 16, except that the explicit and implicit fields agree to within 1%. 

V. SUMMARY AND DISCUSSION 

Fluid and field algorithms suitable for implicit particle-fluid hybrid plasma 
simulation have been investigated in the one-dimensional electrostatic case. 
Particular emphasis was given to (i) acceptable vacuum interface behavior and (ii) 
stable, accurate implicit field solutions. Satisfactory behavior at vacuum interfaces 
is necessary in such hybrid codes because, for many problems of interest, only cold 
and dense plasma regions are represented as fluids, and beyond these regions, fluid 
elements are converted to particles. For regions of large wp At, the field solver must 
be stable and reduce to the proper ambipolar limit without building up errors in 
the divergence of the electric field. Our approach to the second issue is to use the 
actual numerical density fluxes in the field equation and iterate, so that convergence 
will ensure that the implicit field satisfies the Poisson equation. The choice of fluid 
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algorithms then impacts the field solver through these fluxes. In Scheme #I, see 
Section II, Shasta transport was used, with all fluid quantities located at cell 
centers. This scheme gives well-behaved vacuum boundaries in isotherma and 
adiabatic vacuum expansion tests. This choice of fluid algorithm, however, led fc a 
banded matrix equation for the implicit field which admited an unphysical spatial 
oscillation in the velocity. Further, because of the nonlocal nature of the matrix 
solution, convergence errors caused by the nonlinear flux limiter are spread 
throughout the problem. A diagonal field solver is obtained by defining the fluid 
velocities and electric field at the cell boundaries and two different implementations 
of this centering were studied in Section III. Scheme #2, with momentum akc 
defined at cell boundaries gave poor results on both vacuum expansion tests. 
Scheme #3, with momentum defined at cell centers, consistent with the density, 
gave much better results, particularly when combined with the natural gating effect 
of FCT advection algorithms. The resultant diagonal field solver for the implicit 
field was also demonstrated to be stable for op At $ 1. produced the 
ambipolar field, and was accurate as measured by the error in an explicit s 
to tlie Poisson equation. 

Scheme #3 was utilized in two fluid tests with electrons and ions carried out in 
Section V. Accurate results ware obtained for an isothermal vacuum expansion with 
w, dt = 1000. At these high densities, quasineutrality is a good assumption, and 
indeed the simulation closely follows the self-similar solution. In this case the 
implicit electric field reproduces the anticipated ambipolar field result including 
features due to numerically created density perturbations When the density is 
reduced, the simulation diverges from quasineutrality precisely where the electron 
Debye length becomes comparable to the gradient scale length creating a pure eiec- 
tron gas expanding in front of the ions. Convergence of the field solver was found 
to be s!ow in regions where there are both steep density gradients and iarge LL~~ 4:: 
this was more of a problem for FCT transport than for van Leer transport. 

The two-fluid tests presented here still neglect a great deal of important phys~s, 
such as frictional slowing down and calculation of the temperature with equilibra- 
tion between species, dissipation, and heat flow. These effects were included in a 
particle-fluid hybrid code based on Scheme # 1 [a;. Algorithms to include them 
into Scheme # 3 have also been developed and tested [ 171. Frictional forces must 
be included in Eq. (23) so that proper balance between friction and other forces is 
achieved for large collision frequencies. In addition, the hybrid code allows for the 
creation and de1etion of particles. Implementation of the new uid and field 
algorithms is expected to have a minimal effect on this portion of the code, because 
density, momentum, and internal energy remain cell-centered in Scheme i% 3. 

APPENDIX: FIELD SOLVER WITH .~PPLIED POTENTIAL 

This Appendix shows how the field solver derived in Section IILC can be 
generalized to include applied potentials across the system. The potenrial is 
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normalized to Jo E. = Qp To/e, so that in dimensionless units, Q, = - dE/dx. In finite 
difference form this becomes 

Ej+lil= - 
@jCl-@j 

4x . 

To find the potential difference between x = 0 (j = 4) and x = j,,, dx(j= j,,, + i), 
the electric field is integrated using Simpson’s rule, 

V= -4x ~E1:2+Jm~i Ej+,i,+~Ejma,+~~2 
j=l 1 

= -4x c’ Ej+1.‘2 

which may be time dependent. The second line of Eq. (Al) defines an abbreviated 
notation for this particular summation which may be applied to any cell boundary 
quantity. 

This potential difference is taken into account in the field solver by allowing a 
nonzero integration constant, so that Eq. (24) becomes 

where C’ is the time-dependent integration constant still to be determined. The 
significance of the constant C’ may be understood by considering the left-hand 
boundary (x = 0) as a metal wall. Here the electric field EI.lZ is simply proportional 
to the surface charge on the wall. If this surface charge is due only to accumulation 
of fluid charge flowing into the boundary, then C’ must be zero. If however, there 
is an external circuit that provides additional charge to this boundary, then it is 
represented by nonzero C’. The amount of charge provided by the external circuit 
is unknown, since it will depend on the plasma current at the boundary which 
depends on the as yet unknown electric field. Hence C’ must be calculated 
implicitly along with the field. 

Proceeding as in Section IILC, the implicit correction to the electric field is found 
to be 

where 

(‘43) 

Here, S,Fj + L,,2 is the C’= 0 result given by Eq. (25), and Cq+ ’ is the new 
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approximation to C’. An equation for C’ is found by multiplying Eq. (A2) by -LX, 
and summing over j as in Eq. (Al) to obtain 

where 

Here V’ is the potential difference at the new time Bevel and V” is the potentiai 
difference at the old time level. Setting C’ = Cq+ ‘, linearizing the right-band side, 
and substituting Eq. (A3) for 6Ej+ !;>, 

The implicit field correction is performed by first caiculating 6Ej+ I ,z (given by the 
right-hand side of Eq. (25)). Next, C 9+ ’ is calculated using Eq. (,45 ), and Eq. (~$3) 
is used to evaluate 6E, + 1;2. 
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